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Abstract

Asymmetric hydroboration of [E ]- and [Z ]-2-methoxy-2-butene, using (−)-diisopinocampheylborane at
−25°C in THF solvent, followed by oxidation using H2O2/NaOH, gave (−)-[2R,3R ]- and (+)-[2R,3S ]-3-
methoxy-2-butanols in >97 and 90% ee, respectively. (−)-[2R,3R ]-3-Methoxy-2-butanol was converted to
(−)-[2R,3R ]-butane-2,3-diol (>97% ee, in an overall yield of 65%). © 2001 Elsevier Science Ltd. All rights
reserved.

Asymmetric hydroboration of olefins with diisopinocampheylborane (Ipc2BH) has been
studied extensively. It is known that cis-olefins and cyclopentenes react with Ipc2BH at a
reasonable rate to give alcohols of considerate enantiomeric purity.1 However, the reaction of
trans-olefins and hindered olefins, such as trialkyl-substituted olefins, with Ipc2BH is slow and
enantioselectivity is known to be poor. For example, the asymmetric hydroboration of cis-2-
butene using (+)-Ipc2BH at 0°C was complete in 2 hours and upon oxidation gave (+)-2-butanol
in 86–87% enantiomeric excess (ee), whereas reaction of trans-2-butene at 0°C took about 24
hours to reach completion and subsequent oxidation produced (−)-2-butanol in only 13% ee.1

Similarly, asymmetric hydroboration of 1-methylcyclopent-1-ene with Ipc2BH gives the corre-
sponding 2-methylcyclopentanol in only 22% ee.1 However, we found that the asymmetric
hydroboration of oxy-substituted cyclopentene derivatives 1 with (−)-diisopinocampheylborane
(dIpc2BH), followed by oxidation with H2O2/NaOH produces optically active 1,2-cyclopentane
diol derivatives 2 in moderate to good (50–85%) ee and good (79–93%) yields.2
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Encouraged by our results for the asymmetric hydroboration of oxy-substituted cyclopent-
enes, we became interested in studying the asymmetric hydroboration of [E ]-2-methoxy-2-butene
to provide the optically active 2,3-butanediol, a valuable chiral auxiliary.3 To our pleasant
surprise, the hydroboration of [E ]-2-methoxy-2-butene with dIpc2BH proceeds very smoothly at
−25°C in THF and, after oxidation, (−)-[2R,3R ]-3-methoxybutanol was obtained in 97% ee and
in 75% yield. Also, hydroboration of [Z ]-2-methoxy-2-butene using dIpc2BH gave (+)-[2R,3S ]-3-
methoxy-2-butanol in 90% ee. Our results are detailed below (Fig. 1).

Figure 1.

The [E ]- and [Z ]-2-methoxy-2-butenes were prepared stereospecifically, starting from trans-
and cis-2-butene, respectively.4 The asymmetric hydroboration of [E ]-2-methoxy-2-butene was
carried out using dIpc2BH at −25°C in THF solvent. The reaction was complete within 24 hours,
as indicated by the disappearance of solid dIpc2BH and the presence of a single peak in 11B
NMR (d 82 ppm) corresponding to the trialkylborane. Oxidation of the trialkylborane 4 using
30% hydrogen peroxide and aqueous sodium hydroxide gave (−)-[2R,3R ]-3-methoxy-2-butanol5

5 in >97% ee6 and in 72% yield (Scheme 1).7

Scheme 1.

Similarly, [Z ]-2-methoxy-2-butene 6, upon asymmetric hydroboration using dIpc2BH, fol-
lowed by oxidation, gave (+)-[2R,3S ]-3-methoxy-2-butanol5 8 of 90% ee8 in 77% yield (Scheme
2).

Scheme 2.
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The absolute configuration of the products 5 and 6 were determined by comparison of the
specific rotation with reported values.5 The absolute configuration of 5 was also confirmed by its
conversion to (−)-[2R,3R ]-2,3-butanediol (see below). The formation of 5 and 6 can be explained
based on the lowest energy transition state models,9 as shown in Fig. 2.

Figure 2. The possible lowest energy transition state models for the formation of compounds 5 and 8

The [2R,3R ]-3-methoxy-2-butanol was converted10 to its silyl ether 9 using Me3SiCl/NEt3/
ether. Reaction of silyl ether 9 with Me3SiI in CHCl3, followed by treatment with methanol gave
(−)-[2R,3R ]-2,3-butanediol11 (10, >97% ee12) in 65% overall yield (Scheme 3).

Scheme 3.

In conclusion, although the asymmetric hydroboration of trans- and trialkylsubstituted olefins
is known to proceed slowly with Ipc2BH to produce alcohols of very low enantiomeric purity,
the hydroboration of [E ]- and [Z ]-2-methoxy-2-butenes with dIpc2BH proceeded smoothly at
−25°C in THF. After oxidation (−)-[2R,3R ]-3-methoxybutanol and (+)-[2R,3S ]-3-methoxy-2-
butanol were obtained in very high ee (97 and 90%), respectively. Furthermore, the asymmetric
hydroboration of [E ]-2-methoxy-2-butene using dIpc2BH, followed by oxidation and then
demethylation, provides a useful method for preparing optically active 2,3-butanediol in very
high enantiomeric excess and good yield.
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